Existence and Multiplicity of Homoclinic Solutions for the Second Order Hamiltonian systems

نویسندگان

  • Chungen Liu
  • Qingye Zhang
چکیده

In this paper we study the existence and multiplicity of homoclinic solutions for the second order Hamiltonian system ü−L(t)u(t)+Wu(t, u) = 0, ∀t ∈ R, by means of the minmax arguments in the critical point theory, where L(t) is unnecessary uniformly positively definite for all t ∈ R and Wu(t, u) sastisfies the asymptotically linear condition. Mathematics Subject Classification: 37J45, 58E05, 34C37, 70H05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicity of Homoclinic Solutions for Fractional Hamiltonian Systems with Subquadratic Potential

In this paper, we study the existence of homoclinic solutions for the fractional Hamiltonian systems with left and right Liouville–Weyl derivatives. We establish some new results concerning the existence and multiplicity of homoclinic solutions for the given system by using Clark’s theorem from critical point theory and fountain theorem.

متن کامل

Existence of Homoclinic Solutions for Second Order Hamiltonian Systems under Local Conditions

Under some local conditions on V(t,x) with respect to x , the existence of homoclinic solutions is obtained for a class of the second order Hamiltonian systems ü(t) +∇V(t,u(t)) = f (t), ∀t ∈ R .

متن کامل

Homoclinic solutions for second order Hamiltonian systems with general potentials near the origin∗

In this paper, we study the existence of infinitely many homoclinic solutions for a class of second order Hamiltonian systems with general potentials near the origin. Recent results from the literature are generalized and significantly improved.

متن کامل

Homoclinic solutions for a class of non-periodic second order Hamiltonian systems

We study the existence of homoclinic solutions for the second order Hamiltonian system ü+Vu(t, u) = f(t). Let V (t, u) = −K(t, u)+W (t, u) ∈ C1(R×Rn,R) be T -periodic in t, where K is a quadratic growth function and W may be asymptotically quadratic or super-quadratic at infinity. One homoclinic solution is obtained as a limit of solutions of a sequence of periodic second order differential equ...

متن کامل

Homoclinic Solutions for Second-order Non-autonomous Hamiltonian Systems without Global Ambrosetti-rabinowitz Conditions

This article studies the existence of homoclinic solutions for the second-order non-autonomous Hamiltonian system q̈ − L(t)q + Wq(t, q) = 0, where L ∈ C(R, Rn ) is a symmetric and positive definite matrix for all t ∈ R. The function W ∈ C1(R × Rn, R) is not assumed to satisfy the global Ambrosetti-Rabinowitz condition. Assuming reasonable conditions on L and W , we prove the existence of at leas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010